Particles in Microdischarge Plasma: Coulombic Interactions and Optical Effects

Objective

Coulombic interactions of micron~sized particles were studied inside a microplasma. Studying the formation of Coulomb crystals and particle interactions may help characterize the microplasma and help improve device performance.

Background – Microdischarge Devices

High electric fields, driven by AC or DC source, generate localized microplasma. The latest design of microdischarge devices utilizes the dielectric property of alumina (Al_2O_3) .

Figure 1. Microdischarge Device with Alumina Layers

Background – Dusty Plasma Physics

Particles in plasma can form a stabilized configuration known as a Coulomb crystal. Most formation occurs near plasma-sheath boundary, where the electric field is strong.

1. Ions and Electrons – Negatively Charged Surface

2. Ions and Surface – Strong Electric Field

Fabrication

1. Two Aluminum Substrates: Top substrate mechanically drilled to diameter of 100 ~ 200 μm

 Anodization: The time length of anodization controls the thickness of Al₂O₃ layer. Thickness > 10 µm

3. Bonding:

Top and bottom substrates are bonded using Al_2O_3 paste and baked in a high temperature oven

Figure 3. Device Fabrication Process

Experiment

Particles Placed in Microcavities:

- Ho:YLF Crystals
- Green Phosphor
- Ferromagnetic Microspheres

Gases Filled in Vacuum Chamber

- Ne₂
- He₂
- Ar₂-N₂

Figure 4. Vacuum Chamber

Results

- Ho:YLF Crystals: Low emission No discernable movement
- Green Phosphor: Clear emission Distinct particle movement but no stable configuration
- Ferromagnetic Microspheres: Bright white light emission Unable to track movement

Acknowledgments

I would like to acknowledge Dr. Gary Eden, my faculty sponsor, and Dr. Sung-Jin Park, my graduate mentor.