Particles in Microdischarge Plasma: Coulombic Interactions and Optical Effects

Daniel Cho, Optical Physics and Engineering Laboratory - Nano-Cemms, University of Illinois

Objective

Coulombic interactions of micron~sized particles were studied inside a microplasma. Studying the formation of Coulomb crystals and particle interactions may help characterize the microplasma and help improve device performance.

Background - Microdischarge Devices

High electric fields, driven by AC or DC source, generate localized microplasma. The latest design of microdischarge devices utilizes the dielectric property of alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$.

Figure 1. Microdischarge Device with Alumina Layers

Background - Dusty Plasma Physics

Particles in plasma can form a stabilized configuration known as a Coulomb crystal. Most formation occurs near plasma-sheath boundary, where the electric field is strong.

1. Ions and Electrons - Negatively Charged Surface

Figure 2. Formation of Plasma-Sheath Boundary

Fabrication

1. Two Aluminum Substrates: Top substrate mechanically drilled to diameter of $100 \sim 200 \boldsymbol{\mu m}$

2. Anodization:

The time length of anodization controls the thickness of $\mathrm{Al}_{2} \mathrm{O}_{3}$ layer. Thickness > $\mathbf{1 0 \mu m}$

3. Bonding:

Top and bottom substrates are bonded using $\mathrm{Al}_{2} \mathrm{O}_{3}$ paste and baked in a high temperature oven
Figure 3. Device Fabrication Process

Experiment

Particles Placed in Microcavities:

- Ho:YLF Crystals
- Green Phosphor
- Ferromagnetic Microspheres

Gases Filled in Vacuum Chamber

- Ne_{2}
- He_{2}
- $\mathrm{Ar}_{2}-\mathrm{N}_{2}$

Figure 4. Vacuum Chamber

Results

- Ho:YLF Crystals: Low emission

No discernable movement

- Green Phosphor: Clear emission

Distinct particle movement
but no stable configuration

- Ferromagnetic Microspheres:

Bright white light emission Unable to track movement

Acknowledgments

I would like to acknowledge Dr. Gary Eden, my faculty sponsor, and Dr. Sung-Jin Park, my graduate mentor.

